Wan Video ComfyUI (T2V & I2V)
详情
下载文件
关于此版本
模型描述
压缩包包含两个用于运行的 ComfyUI 工作流:
Wan 2.1 T2V:wan2-t2v-upscale-v1.json
Wan 2.1 I2V:wan2-i2v-upscale-v1.json
参考输出:
在配备 RTX4060 8GB 显存 + 32GB 内存的设备上,I2V:提示词执行耗时 2807.42 秒
在配备 RTX5080 笔记本 16GB 显存 + 32GB 内存的设备上,I2V:提示词执行耗时 1401.00 秒
要求:
模型:
wan2.1-t2v-14b-Q3_K_M.gguf(T2V)放置于:ComfyUI\models\unet
https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/resolve/main/wan2.1-t2v-14b-Q3_K_M.ggufwan2.1-i2v-14b-480p-Q3_K_M.gguf(I2V)放置于:ComfyUI\models\unet
https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/resolve/main/wan2.1-i2v-14b-480p-Q3_K_M.ggufwan2.1_t2v_1.3B_fp16.safetensors(T2V 模型,用于工作流 "v2v")放置于:ComfyUI\models\diffusion_models
https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_1.3B_fp16.safetensorsumt5-xxl-encoder-Q4_K_M.gguf(CLIP)放置于:ComfyUI\models\text_encoders
https://huggingface.co/city96/umt5-xxl-encoder-gguf/resolve/main/umt5-xxl-encoder-Q4_K_M.ggufumt5_xxl_fp8_e4m3fn_scaled.safetensors(CLIP,若修改工作流 "v2v" 可使用此模型)放置于:ComfyUI\models\text_encoders
https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensorswan_2.1_vae.safetensors(VAE)放置于:ComfyUI\models\vae
https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensorsclip_vision_h.safetensors(CLIP VISION)放置于:ComfyUI\models\clip_vision
https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/clip_vision/clip_vision_h.safetensorsRealESRGAN_x2plus.pth(超分模型)放置于:ComfyUI\models\upscale_models
https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth
ComfyUI 节点:
- rgthree-comfy
- ComfyUI-KJNodes
- ComfyUI-VideoHelperSuite
- ComfyUI-Frame-Interpolation
- Comfyui-Memory_Cleanup(若修改工作流则非必需)
若您的硬件性能更强,可选择更高量化级别的模型。





