樱岛麻衣Sakurajima Mai

Details

Download Files

Model description

模型简介:

基于《青春猪头少年不会梦到兔女郎学姐》中 樱岛麻衣 角色,训练的专属 LoRA 模型。聚焦还原她的经典形象(黑长直发型、校服/兔女郎等服饰特征),适配动漫风格底模,轻松生成贴合原作气质的画面。

Model Introduction:

Based on the character of Mai Sakurajima in "Rascal Does Not Dream of Bunny Girl Senpai", we trained a dedicated LoRA model. We focused on restoring her classic image (long straight black hair, school uniform/bunny girl and other clothing features), adapted the anime style base model, and easily generated a picture that fits the original temperament.

基础参数:

- 底模选择:推荐搭配 AnimeSharp/AnythingV5 等动漫向 Checkpoint,风格适配度更高。

- 采样器:优先尝试  Euler a  /  DPM++ 2M Karras ,画面细腻度与风格还原更平衡。

Basic parameters:

- Base model selection: It is recommended to use AnimeSharp/AnythingV5 and other animation-oriented Checkpoints, which are more suitable for the style.

- Sampler: Try Euler a / DPM++ 2M Karras first, which has a better balance between picture detail and style restoration.

核心参数:

- LoRA 权重:建议  0.6 - 0.8 (强度过高易导致面部崩坏,过低则风格不明显,可根据提示词灵活微调)。

- CFG Scale:推荐  6 - 8 (平衡提示词约束与模型创意,过高可能让画面僵硬,过低会偏离角色特征)。

- Denoising Strength(重绘强度,用于 img2img):若基于原图二次创作, 0.4 - 0.6  可保留原图基础,同时融入模型风格;纯文生图无需此参数。

Core parameters:

- LoRA weight: recommended 0.6 - 0.8 (too high strength can easily lead to facial collapse, too low strength will make the style unclear, can be flexibly adjusted according to the prompt word).

- CFG Scale: recommended 6 - 8 (balance prompt word constraints and model creativity, too high may make the picture stiff, too low will deviate from the character characteristics).

- Denoising Strength (redrawing strength, used for img2img): If based on the original image for secondary creation, 0.4 - 0.6 can retain the original image foundation while incorporating the model style; pure text images do not need this parameter.

效果说明:

- 文生图:输入角色+服饰关键词(如  school uniform  /  bunny girl suit  ),可生成符合原作风格的新场景,发型、神态还原度较高。

- 图生图:对动漫截图、同人草稿重绘,能强化“麻衣学姐”风格,优化画面细节(如校服纹理、发丝质感 )。

Effect description:

- Text-based pictures: Input character + clothing keywords (such as school uniform / bunny girl suit) to generate new scenes that match the style of the original work, with a high degree of restoration of hairstyles and expressions.

- Picture-based pictures: Redraw anime screenshots and fan drafts to enhance the style of "Mai Senior Sister" and optimize picture details (such as school uniform texture and hair texture).

提示词示例(可根据需求增减细节):

Prompt word example (details can be added or reduced as needed):

一、核心角色特征(Core Character Characteristics)

- 基础形象(Basic image):mayi, Sakurajima Mai, long black hair, school uniform, pink bow (麻衣,樱岛麻衣,黑色长发,校服,粉色领结 )

- 经典元素(Classic elements): bunny girl suit, black stockings, rabbit hairpin (兔女郎套装,黑丝,兔耳发卡 )

- 神态表情(Expression): calm expression, slightly smile, lazy charm (冷静神情,微微笑容,慵懒气质 )

二、画面风格/氛围(Graphic style/atmosphere)

- 原作还原(Original restoration): anime style, Seishun Buta Yarou, official art (动漫风格,青春猪头少年,官方画风 )

- 艺术强化(Art Enhancement): watercolor, ink painting, oil painting (水彩风,水墨风,油画质感 )

- 场景氛围(Scene atmosphere): school classroom, sunset glow, city night (学校教室,夕阳余晖,城市夜景 )

三、细节补充(Additional details)

- 画质提升(Improved image quality): best quality, ultra-detailed, 8k resolution (最佳质量,极致细节,8K 分辨率 )

- 动态动作(Dynamic Action): sitting pose, walking, holding rabbit plush (坐姿,漫步,抱兔玩偶 )

- 特殊效果(Special Effects): glowing eyes, dreamy atmosphere, lens flare (眼神发光,梦幻氛围,镜头光晕 )

四、负面提示词(Negative prompt words)

 lowres, bad anatomy, deformed, extra limbs, text, watermark (低分辨率,畸形人体,多余肢体,文字水印 )

注意事项:

- 极端参数(如 CFG>12、LoRA 权重>1.0 )可能引发画面畸变,建议循序渐进调整。

- 搭配更详细的提示词(如  detailed face   cinematic lighting  ),可进一步提升画面精致度。

Notes:

- Extreme parameters (such as CFG>12, LoRA weight>1.0) may cause image distortion, so it is recommended to adjust gradually.

- With more detailed prompts (such as detailed face cinematic lighting), the image refinement can be further improved.

欢迎大家测试反馈,一起探索更多“麻衣学姐”的创作玩法~

Welcome everyone to test and give feedback, and explore more creative ways to play "Mai Senior Sister" together~

Images made by this model

No Images Found.