dataset.toml
resolutions = [ [ 342, 192,], [ 854, 480,], [1067, 600]]
enable_ar_bucket = true
min_ar = 0.5
max_ar = 2.0
num_ar_buckets = 7
frame_buckets = [ 1, 16, 30, 33]
[[directory]]
path = "/home/beauty_of_rain_dataset/videos"
num_repeats = 2
train.toml
output_dir = "/home/beauty_of_rain_dataset/A14B"
dataset = "/home/dataset_v000_854_480_A14B.toml"
epochs = 100
micro_batch_size_per_gpu = 1
pipeline_stages = 1
gradient_accumulation_steps = 1
gradient_clipping = 1
warmup_steps = 10
eval_every_n_epochs = 1
eval_before_first_step = true
eval_micro_batch_size_per_gpu = 1
eval_gradient_accumulation_steps = 1
save_every_n_epochs = 6
activation_checkpointing = true
partition_method = "parameters"
save_dtype = "bfloat16"
caching_batch_size = 1
steps_per_print = 10
video_clip_mode = "single_beginning"
blocks_to_swap = 32
[model]
type = "wan"
ckpt_path = "/home/Wan2.2-T2V-A14B"
dtype = "bfloat16"
transformer_dtype = "float8"
timestep_sample_method = "logit_normal"
transformer_path = "/home/Wan2.2-T2V-A14B/low_noise_model"
min_t = 0
max_t = 0.875
[adapter]
type = "lora"
rank = 32
dtype = "bfloat16"
[optimizer]
type = "adamw_optimi"
lr = 5e-5
betas = [ 0.9, 0.99,]
weight_decay = 0.01
eps = 1e-8