Cat Tower (NoobAI XL checkpoint)

세부 정보

모델 설명

고양이 타워는 애니메이션 스타일 NoobAI XL 체크포인트입니다.

VAE는 내장되어 있습니다.

v-예측 버전은 실험적 모델입니다.

v-예측을 지원하는 웹UI를 사용해야 합니다.

  • ComfyUI (권장)

  • Forge Classic (권장)

  • reForge

  • Forge (아마도)

  • AUTOMATIC1111 (v1.4 이상, 체크포인트와 동일한 폴더에 설정 파일을 배치해야 함)

라이선스

이 모델은 NoobAI-XL 라이선스(수정된 Fair AI 공개 라이선스 1.0-SD) 를 준수하며, 비상업적 용도로만 사용할 수 있습니다. 이 라이선스는 모델, 파생 모델 또는 모델 생성 제품의 수익화 또는 상업적 사용을 포함하여 어떤 형태의 상업화도 금지합니다.

추천 설정

  • 스텝: 25-30

  • CFG 스케일: 5-7

  • 샘플러 (vPred): "Euler" 사용을 권장합니다. "Euler a"를 사용하면 빨강, 파랑 등 색상이 붙은 피부나 물체가 생성될 수 있습니다.

  • 샘플러 (Epsilon-예측): DPM++ 2M Karras, Euler a

  • 스케줄러 (vPred): Normal, Simple ("Automatic"은 잡음이 많은 이미지를 생성합니다.)

  • 필요 시 ADetailer 사용

긍정적 프롬프트

masterpiece, best quality

부정적 프롬프트

worst quality, bad quality, low quality, lowres, scan artifacts, jpeg artifacts, sketch, light particles

병합 레시피 (vPred v2.0)

  1. Obsession (Illustrious-XL) v-pred_v2.0stable-diffusion-xl-base-1.0, CyberRealistic XL v5.6와 stable-diffusion-xl-base-1.0의 차이를 "수직 성분"과 "차이 추가"를 통해 Obsession (Illustrious-XL) v-pred_v2.0에 병합 (체크포인트 A)

  2. 체크포인트 A를 "SLERP"로 Obsession (Illustrious-XL) v-pred_v2.0에 병합, alpha = 0.5 (체크포인트 B)

  3. 체크포인트 B를 "Rotate"로 Obsession (Illustrious-XL) v-pred_v2.0에 병합, alignment = 1.0, alpha = 0.0 (체크포인트 C)

  4. 체크포인트 C의 CLIP을 Obsession (Illustrious-XL) v-pred_v2.0으로 교체 (체크포인트 D)

  5. 체크포인트 D를 애니메이션 스타일 데이터셋 A(2.1k)로 풀 파인튜닝, optimizer = AdamW8bit, scheduler = warmup stable decay, 학습률 = 6e-6, scheduler 최소 학습률 비율 = 0.1, 32 에포크, unet만, 그래디언트 누적 단계 = 1, 배치 크기 = 4. (체크포인트 E)

  6. 체크포인트 D를 애니메이션 스타일 데이터셋 B(0.5k)로 풀 파인튜닝, optimizer = AdamW8bit, scheduler = warmup stable decay, 학습률 = 3e-6, scheduler 최소 학습률 비율 = 0.1, 60 에포크, unet만, 그래디언트 누적 단계 = 1, 배치 크기 = 4. (체크포인트 F)

  7. 체크포인트 F를 "SLERP"로 체크포인트 E에 병합, alpha = 0.5 (체크포인트 G)

  8. LunarPeachMix v2.0Illustrious XL v1.1의 차이를 "Add Difference"로 체크포인트 G에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 H)

  9. JANKU v5.0RouWei v0.8 epsilon의 차이를 "Add Difference"로 체크포인트 H에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 I)

  10. copycat-RouWei vpred-v0.42 Rouwei 0.80 vpred 의 차이를 "Add Difference"로 체크포인트 I에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 J)

  11. 체크포인트 I를 "Clamp"로 병합, bounds = 체크포인트 G, LunarPeachMix v2.0, JANKU v5.0, copycat-RouWei vpred-v0.42 (체크포인트 K)

  12. noob_v_pencil-XL 병합 레시피로 체크포인트 K에 v_pred 및 ztsnr 키 추가 (Cat Tower vPred v2.0)

병합 레시피 (Epsilon-pred v1.4)

  1. NoobAI-XL Epsilon-pred v1.1stable-diffusion-xl-base-1.0, CyberRealistic XL v5.6과 stable-diffusion-xl-base-1.0의 차이를 "Perpendicular Component"와 "Add Difference"로 NoobAI-XL Epsilon-pred v1.1에 병합 (체크포인트 A)

  2. 체크포인트 A를 "SLERP"로 NoobAI-XL Epsilon-pred v1.1에 병합, alpha = 0.5 (체크포인트 B)

  3. 체크포인트 B를 "Rotate"로 NoobAI-XL Epsilon-pred v1.1에 병합, alignment = 1.0, alpha = 0.0 (체크포인트 C)

  4. 체크포인트 C의 CLIP을 NoobAI-XL Epsilon-pred v1.1로 교체 (체크포인트 D)

  5. 체크포인트 D를 애니메이션 스타일 데이터셋(0.5k)으로 OFT 방법으로 파인튜닝, dim = 4, alpha = 1e-3, 학습률 = 2.5e-6, 15000 스텝. 그리고 OFT 모델을 체크포인트 D에 ratio = 1.0으로 병합 (체크포인트 E)

  6. Cat Carrier v6.0를 "Weighted Sum"으로 체크포인트 E에 병합, 블록 (0,0,0,0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0,0,0,0,0) (체크포인트 F)

  7. LunarPeachMix v2.0Illustrious XL v1.1의 차이를 "Add Difference"로 체크포인트 F에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 G)

  8. JANKU v4.0 RouWei v0.7 epred 의 차이를 "Add Difference"로 체크포인트 G에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 H)

  9. copycat-RouWei vpred-v0.42 Rouwei 0.80 vpred 의 차이를 "Add Difference"로 체크포인트 H에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 I)

  10. 체크포인트 I를 "Clamp"로 병합, bounds = 체크포인트 F, LunarPeachMix v2.0, JANKU v4.0, copycat-RouWei vpred-v0.42 (Cat Tower Epsilon-pred v1.4)

병합 레시피 (vPred v1.8)

  1. NoobAI-V-Pred-1.0-Versionstable-diffusion-xl-base-1.0, CyberRealistic XL v5.6과 stable-diffusion-xl-base-1.0의 차이를 "Perpendicular Component"와 "Add Difference"로 NoobAI-V-Pred-1.0-Version에 병합 (체크포인트 A)

  2. 체크포인트 A를 "SLERP"로 NoobAI-V-Pred-1.0-Version에 병합, alpha = 0.5 (체크포인트 B)

  3. 체크포인트 B를 "Rotate"로 NoobAI-V-Pred-1.0-Version에 병합, alignment = 1.0, alpha = 0.0 (체크포인트 C)

  4. 체크포인트 C의 CLIP을 NoobAI-V-Pred-1.0-Version으로 교체 (체크포인트 D)

  5. 체크포인트 D를 애니메이션 스타일 데이터셋(0.5k)으로 OFT 방법으로 파인튜닝, dim = 4, alpha = 1e-3, 학습률 = 2.5e-6, 15000 스텝. 그리고 OFT 모델을 체크포인트 D에 ratio = 1.0으로 병합 (체크포인트 E)

  6. Cat Carrier v6.0를 "Weighted Sum"으로 체크포인트 E에 병합, 블록 (0,0,0,0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0,0,0,0,0) (체크포인트 F)

  7. LunarPeachMix v2.0Illustrious XL v1.1의 차이를 "Add Difference"로 체크포인트 F에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 G)

  8. JANKU v4.0 RouWei v0.7 epred 의 차이를 "Add Difference"로 체크포인트 G에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 H)

  9. copycat-RouWei vpred-v0.42 Rouwei 0.80 vpred 의 차이를 "Add Difference"로 체크포인트 H에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0) (체크포인트 I)

  10. 체크포인트 I를 "Clamp"로 병합, bounds = 체크포인트 F, LunarPeachMix v2.0, JANKU v4.0, copycat-RouWei vpred-v0.42 (체크포인트 J)

  11. noob_v_pencil-XL 병합 레시피로 체크포인트 J에 v_pred 및 ztsnr 키 추가 (Cat Tower vPred v1.8)

병합 레시피 (Epsilon-pred v1.3)

  1. Cat Tower Epsilon-pred v1.2Cat Tower v-pred v1.7을 "DARE-TIES"로 병합 (Cat Tower Epsilon-pred v1.3)

병합 레시피 (vPred v1.7)

  1. CyberRealistic XL v5stable-diffusion-xl-base-1.0의 차이를 "Add Difference"로 NoobAI-V-Pred-1.0-Version에 병합 (체크포인트 A)

  2. 체크포인트 A의 CLIP을 NoobAI-V-Pred-1.0-Version으로 교체 (체크포인트 B)

  3. Cat Carrier v3.0을 "Weighted Sum"으로 체크포인트 B에 병합, 블록 (0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.0,0,0,0,0) (체크포인트 C)

  4. Cat Tower vpred v1.5을 "Add Cosine B"로 체크포인트 C에 병합, 블록 (0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0,0,0,0,0) (체크포인트 D)

  5. Cat Bread eps-pred v1.0을 "Weighted Sum"으로 체크포인트 D에 병합, 블록 (0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0,0,0,0,0) (체크포인트 E)

  6. CatloafponyDiffusionV6XL의 차이를 "Train Difference"로 체크포인트 E에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0) (체크포인트 F)

  7. copycat-noob Vpred_v1.01NoobAI-V-Pred-1.0-Version의 차이를 "Train Difference"로 체크포인트 F에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0) (체크포인트 G)

  8. 스타일 LoRA를 체크포인트 G에 병합 (체크포인트 H)

  9. noob_v_pencil-XL 병합 레시피로 체크포인트 H에 v_pred 및 ztsnr 키 추가 (Cat Tower vPred v1.7)

병합 레시피 (vPred v1.6)

  1. NoobAI-V-Pred-1.0-VersionIterCompNoob Vpred itercomp merge's recipes로 병합. (체크포인트 A)

  2. NoobAI-V-Pred-1.0-Version을 애니메이션 스타일 데이터셋(0.5k)으로 OFT 방법으로 파인튜닝, dim = 8, alpha = 1e-3, 학습률 = 1e-4, 15000 스텝

  3. OFT 모델을 체크포인트 A에 ratio = 1.0으로 병합 (체크포인트 B)

  4. 체크포인트 B를 "Weighted Sum"으로 체크포인트 A에 병합, alpha = 0.4 (체크포인트 C)

  5. Cat Carrier v3.0을 "Weighted Sum"으로 체크포인트 C에 병합, 블록 (0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.6,0.6,0.6,0.4,0.6,0.6,0.0,0,0,0,0) (체크포인트 D)

  6. 체크포인트 D와 HarmoniqMix_vPred_v1을 "Weighted Sum"으로 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0) (체크포인트 E)

  7. CatloafponyDiffusionV6XL의 차이를 "Train Difference"로 체크포인트 E에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0) (체크포인트 F)

  8. copycat-noob Vpred_v1.01NoobAI-V-Pred-1.0-Version의 차이를 "Train Difference"로 체크포인트 F에 병합, 블록 (0,0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0) (체크포인트 G)

  9. 스타일 LoRA를 Checkpoint G(_checkpoint H)에 병합

  10. noob_v_pencil-XL 병합 레시피를 사용하여 Checkpoint H에 v_pred 및 ztsnr 키 추가 (Cat Tower vPred v1.6)

병합 레시피 (Epsilon-pred v1.2)

  1. cyberrealisticXL_v31stable-diffusion-xl-base-1.0의 차이를 "Add Difference"로 NoobAI-XL Epsilon-pred v1.1에 병합, alpha=1.0. (Checkpoint A)

  2. Checkpoint A의 CLIP을 NoobAI-XL Epsilon-pred v1.1로 교체. (Checkpoint B)

  3. Cat Carrier v3.0과 Checkpoint B의 차이를 "Add Difference"로, 블록(0.01,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.35,0.35,0.35,0.2,0.35,0.35,0,0,0,0,0)로 병합. (Checkpoint C)

  4. copycat-noob v0.3testNoobAI-XL Epsilon-pred v0.75의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0.2,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint C에 병합. (Checkpoint D)

  5. 스타일 LoRA를 Checkpoint D에 병합 (Cat Tower Epsilon-pred v1.2)

병합 레시피 (vPred v1.5)

  1. NoobAI-V-Pred-1.0-VersionIterCompNoob Vpred itercomp merge's recipes로 병합. (Checkpoint A)

  2. OFT 방법을 사용하여 애니메이션 스타일 데이터셋(0.5k)으로 NoobAI-V-Pred-1.0-Version을 미세조정, dim = 8, alpha = 1e-3, 학습률 = 1e-4, 15000 스텝

  3. OFT 모델을 Checkpoint A에 비율 1.0으로 병합. (Checkpoint B)

  4. Checkpoint B와 Cat Tower v1.1 Epsilon-pred을 "Weighted Sum"으로, 블록(0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.0,0,0,0,0)로 병합. (Checkpoint C)

  5. Checkpoint C와 HarmoniqMix_vPred_v1을 "Weighted Sum"으로, 블록(0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.0,0,0,0,0)로 병합. (Checkpoint D)

  6. CatloafponyDiffusionV6XL의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint D에 병합. (Checkpoint E)

  7. copycat-noob Vpred_v0.4Noobai-XL-V-pred-0.75S-Version의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0)로 Checkpoint E에 병합. (Checkpoint F)

  8. noob_v_pencil-XL 병합 레시피를 사용하여 Checkpoint F에 v_pred 및 ztsnr 키 추가 (Cat Tower vPred v1.5)

병합 레시피 (vPred v1.4)

  1. NoobAI-V-Pred-0.75S-VersionIterCompNoob Vpred itercomp merge's recipes로 병합. (Checkpoint A)

  2. OFT 방법을 사용하여 애니메이션 스타일 데이터셋(0.5k)으로 NoobAI-V-Pred-0.75S-Version을 미세조정, dim = 8, alpha = 1e-3, 학습률 = 1e-4, 15000 스텝

  3. OFT 모델을 Checkpoint A에 비율 1.0으로 병합. (Checkpoint B)

  4. Checkpoint B와 Cat Tower v1.1 Epsilon-pred을 "Weighted Sum"으로, 블록(0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.0,0,0,0,0)로 병합. (Checkpoint C)

  5. Checkpoint C와 HarmoniqMix_vPred_v1을 "Weighted Sum"으로, 블록(0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.0,0,0,0,0)로 병합. (Checkpoint D)

  6. CatloafponyDiffusionV6XL의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint D에 병합. (Checkpoint E)

  7. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0)로 Checkpoint E에 병합. (Checkpoint F)

  8. NoobAI-V-Pred-0.75S-Version과 Checkpoint F를 "Weighted Sum"으로, 블록(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)로 병합. (Cat Tower vPred v1.4)

병합 레시피 (Epsilon-pred v1.1)

  1. NoobAI-XL Epsilon-pred 1.1-VersioncyberrealisticXL_v31을 병합하고, CLIP을 NoobAI-XL Epsilon-pred 1.1-Version으로 교체. NoobaiCyberFix와 동일한 방법. (Checkpoint A)

  2. Cat Carrier v1.0Raehoshi illust XL v1.0의 차이를 "trainDifference"로, 블록(0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.2,0.2,0.4,0.6,0.6,0.6,0.2,0.2,0.2,0.2,0.2)로 Checkpoint A에 병합. (Checkpoint B)

  3. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 "trainDifference"로, 블록(0,0,0,0,0,0,0,0,0.2,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint B에 병합. (Checkpoint C)

  4. 스타일 LoRA를 Checkpoint C에 병합 (Cat Tower Epsilon-pred v1.1)

병합 레시피 (vPred v1.3)

  1. NoobAI-V-Pred-0.65S-VersionIterCompNoob Vpred itercomp merge's recipes로 병합. (Checkpoint A)

  2. OFT 방법을 사용하여 애니메이션 스타일 데이터셋(0.5k)으로 NoobAI-V-Pred-0.65S-Version을 미세조정, dim = 8, alpha = 1e-3, 학습률 = 1e-4, 15000 스텝

  3. OFT 모델을 Checkpoint A에 비율 1.0으로 병합. (Checkpoint B)

  4. Checkpoint B와 HarmoniqMix_vPred_v1을 "Weighted Sum"으로, 블록(0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.5,0.5,0.5,0.5,0.0,0,0,0,0)로 병합. (Checkpoint C)

  5. CatloafponyDiffusionV6XL의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint C에 병합. (Checkpoint D)

  6. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0)로 Checkpoint D에 병합. (Checkpoint E)

  7. ExilluSPO Anime v1과 illustriousXL_smoothftSPO의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0.15,0.15,0.15,0.15,0,0,0,0,0)로 Checkpoint D에 병합. (Checkpoint F)

  8. NoobAI-V-Pred-0.65S-Version + (Checkpoint F - NoobAI-V-Pred-0.65S-Version) 병합. (Cat Tower vPred v1.3)

병합 레시피 (vPred v1.2)

  1. NoobAI-V-Pred-0.65S-VersioncyberrealisticXL_v31을 병합하고, CLIP을 NoobAI-V-Pred-0.65S-Version으로 교체. NoobaiCyberFix와 동일한 방법. (Checkpoint A)

  2. NoobAI-V-Pred-0.65S-VersionIterCompNoob Vpred itercomp merge's recipes로 병합. (Checkpoint B)

  3. Checkpoint A * (1 - 0.5) + Checkpoint B * 0.5 병합. (Checkpoint C)

  4. Cat Carrier v1.0Raehoshi illust XL v1.0의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0.25,0,0,0.25,0.45,0.45,0.45,0,0,0,0,0)로 Checkpoint C에 병합. (Checkpoint D)

  5. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint D에 병합. (Checkpoint E)

  6. 스타일 LoRA를 Checkpoint E에 병합 (Checkpoint F)

  7. NoobAI-V-Pred-0.65S-Version + (Checkpoint F - NoobAI-V-Pred-0.65S-Version)을 조정(0,0,0,0,0,2.34,0,-0.95)하여 병합. (Cat Tower vPred v1.2)

병합 레시피 (vPred v1.1)

  1. NoobAI-V-Pred-0.6-VersioncyberrealisticXL_v31을 병합하고, CLIP을 NoobAI-V-Pred-0.6-Version으로 교체. NoobaiCyberFix와 동일한 방법. (Checkpoint A)

  2. Cat Carrier v1.0Raehoshi illust XL v1.0의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0.3,0,0,0.3,0.5,0.5,0.5,0,0,0,0,0)로 Checkpoint A에 병합. (Checkpoint B)

  3. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 "Train Difference"로, 블록(0,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0)로 Checkpoint B에 병합. (Checkpoint C)

  4. 스타일 LoRA를 Checkpoint C에 병합 (Checkpoint D)

  5. NoobAI-V-Pred-0.6-Version과 Checkpoint D를 다음 계산으로 병합: NoobAI-V-Pred-0.6-Version + (Checkpoint D - NoobAI-V-Pred-0.6-Version). (Cat Tower vPred v1.1)

병합 레시피 (vPred v1)

  1. NoobAI-V-Pred-0.5-VersioncyberrealisticXL_v31을 병합하고, CLIP을 NoobAI-V-Pred-0.5-Version으로 교체. NoobaiCyberFix와 동일한 방법. (Checkpoint A)

  2. HarmoniqMix_vPred_v1 - NoobAI-V-Pred-0.5-Version의 차이를 "Add Difference" 및 "Clamp"로 Checkpoint A에 병합. (Checkpoint B)

  3. Cat Carrier v1.0Raehoshi illust XL v1.0의 차이를 "Train Difference"로, 블록(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.2,0.1,0.1,0.2,0.3,0.3,0.3,0.1,0.1,0.1,0.1,0.1)로 Checkpoint B에 병합. (Checkpoint C)

  4. NoobAI-V-Pred-0.5-Version과 Checkpoint C를 다음 계산으로 병합: NoobAI-V-Pred-0.5-Version + (Checkpoint C - NoobAI-V-Pred-0.5-Version). (Cat Tower vPred v1)

병합 레시피 (Epsilon-pred v1)

  1. Cat Carrier v1.0Raehoshi illust XL v1.0의 차이를 NoobaiCyberFix v1.0에 병합, NoobaiCyberFix + (Cat Carrier - Raehoshi illust XL) × alpha (0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.2,0.2,0.4,0.6,0.6,0.6,0.2,0.2,0.2,0.2,0.2), mode = Add difference, calcmode = trainDifference (Checkpoint A)

  2. copycat-noob v0.3testNoobAI-XL Epsilon-pred 0.75-Version의 차이를 Checkpoint A에 병합, Checkpoint A + (copycat-noob - NoobAI-XL) × alpha (0,0,0,0,0,0,0,0,0.2,0,0,0.2,0.2,0.2,0.2,0,0,0,0,0), mode = Add difference, calcmode = trainDifference (Checkpoint B)

  3. 스타일 LoRA를 Checkpoint B에 병합 (Cat Tower Epsilon-pred v1)

이 모델로 만든 이미지

이미지를 찾을 수 없습니다.